Large Sample Sieve Estimation of Semi-Nonparametric Models∗

نویسنده

  • Xiaohong Chen
چکیده

Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; semi-nonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion function over a sequence of approximating parameter spaces, called sieves, which are significantly less complex than the original parameter space. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated econometric models. For example, it can simultaneously estimate the parametric and nonparametric components in semi-nonparametric models with or without constraints. It can easily incorporate prior information, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and non-negativity. This chapter describes estimation of semi-nonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve M-estimates, pointwise normality of series estimates of regression functions, root-n asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite dimensional parameters. Examples are used to illustrate the general results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

METHODS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSIONS WITH ENDOGENEITY: A GENTLE GUIDE By

This paper reviews recent advances in estimation and inference for nonparametric and semiparametric models with endogeneity. It first describes methods of sieves and penalization for estimating unknown functions identified via conditional moment restrictions. Examples include nonparametric instrumental variables regression (NPIV), nonparametric quantile IV regression and many more semi-nonparam...

متن کامل

Semi-Nonparametric Modeling and Estimation∗

In this paper it will show how unknown density and distribution functions can be modeled semi-nonparametrically via orthonormal series expansions, and how to estimate semi-nonparametric (SNP) models via a sieve estimation approach. As an application I will focus on the mixed proportional hazard (MPH) model with fixed right censoring and unspecified mixing distribution and baseline hazard. I wil...

متن کامل

Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals

For semi/nonparametric conditional moment models containing unknown parametric components (θ) and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD (PSMD) estim...

متن کامل

SIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006